

规格书编号

SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客 户:							
PRODUCT 产品:	SAW RESONATOR						
MODEL NO 型 号:	HDR433MS3						
PREPARED 编 制:	CHECKED 审 核:	:					
APPROVED 批准:	DATE 日期:	2006-5-11					
客户确认 CUSTOMER RI	ECEIVED:						
审核 CHECKED	批准 APPROVED	日期 DATE					

无锡市好达电子有限公司 Shoulder Electronics Limited

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

1. SCOPE

This specification shall cover the characteristics of 1-port SAW resonator with 433.92M used for remote-control security.

2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V			
AC Voltage Vpp	10V50Hz/60Hz			
Operation temperature	-40°C to +85°C			
Storage temperature	-45°C to +85°C			
RF Power Dissipation	0dBm			

2.2 Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum
Center Freque	ncy	MHz	433.845	433.920	433.995
Insertion Loss		dB		1.5	2.5
Quality Factor	· Unload Q		8000	12800	
50Ω Loaded	Q		1000	2000	
Temperature	Turnover Temperature	$^{\circ}\!\mathbb{C}$	10	25	40
Stability	ty Freq.temp.Coefficient			0.032	
Frequency Ag	ing	ppm/yr		<±10	
DC. Insulation	Resistance	$\mathbf{M} \Omega$	1.0		
DE Ei1	Motional Resistance R1	Ω		16	26
RF Equivalen	Motional Inductance L1	μН		81.06	
KLC Wodel	Motional Capacitance C1	fF		1.6596	
Transducer Sta	atic Capacitance	pF		1.96	

3. TEST CIRCUIT

4. DIMENSION

- 2.Input
- 6.Output
- 1.3.5.7.Gound
- 4.8 Ground

5. ENVIRONMENTAL CHARACTERISTICS

5-1 Temperature cycling

Subject the device to a low temperature of -40 $^{\circ}$ C for 30 minutes. Following by a high temperature of +25 $^{\circ}$ C for 5 Minutes and a higher temperature of +85 $^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in 2.2.

5-2 Resistance to solder heat

Submerge the device terminals into the solder bath at 260° C $\pm 5^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in 2.2.

5-3 Solderability

Submerge the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in 2.2.

5-4 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the resonator shall fulfill the specifications in 2.2.

5-5 Vibration

Subject the device to the vibration for 2 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The resonator shall fulfill the specifications in 2.2.

6. REMARK

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

7. Packing

7.1 Dimensions

(1) Carrier Tape: Figure 1

(2) Reel: Figure 2

(3) The product shall be packed properly not to be damaged during transportation and storage.

7.2 Reeling Quantity

1000 pcs/reel 7" 3000 pcs/reel 13"

7.3 Taping Structure

(1) The tape shall be wound around the reel in the direction shown below.

(2) Label

Device Name	
User Product Name	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.

8. TAPE SPECIFICATIONS

8.1 Tensile Strength of Carrier Tape: 4.4N/mm width

8.2 Top Cover Tape Adhesion (See the below figure)

(1) pull off angle: 0~15°
(2) speed: 300mm/min.
(3) force: 20~70g

[Figure 1] Carrier Tape Dimensions

Tape Running Direction

[Unit:mm]

W	F	Е	P0	P1	P2	D0	D1	t1	t2	A	В
12.0	5.5	1.75	4.0	8.0	2.0	Ø1.5	Ø1.0	0.3	2.10	6.40	5.20
± 0.3	± 0.05	± 0.1	±0.1	± 0.1	± 0.05	± 0.1	± 0.25	± 0.05	± 0.1	± 0.1	± 0.1

[Figure 2]

A	В	С	D	Е	W	t	r
Ø330	Ø100	Ø13	Ø21	2	13	3	1.0
± 1.0	± 0.5	± 0.5	± 0.8	± 0.5	± 0.3	max.	max.